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The new effect of photo-stimulated dissolution of as-evaporated and annealed Ge-based chalcogenide 

glass (ChG) films was investigated. The etching rate increases with the illumination intensity, and its 

spectral dependence is correlated with absorption in the film at the absorption edge. The high-frequency 

diffraction gratings on germanium ChG - more environmentally acceptable compounds than traditionally 

used arsenic chalcogenides, were recorded by method of interference immersion photolithography with 

photoinduced etching.  
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1. INTRODUCTION 
 

Chalcogenide photoresists based on thermal evapo-

rated amorphous films of chalcogenide glasses (ChG) 

are characterized by high resolution, optical uniformi-

ty, wide spectral range of photosensitivity and the pos-

sibility to be used on both planar and non-planar sub-

strates. Additionally, such photoresists possess a high 

refractive index, ranging from 2.0 to 3.0, and are very 

perspective for immersion lithography, including high 

resolution interference lithography [1-4]. But recently 

was established [5] that the interference relief struc-

tures, formed on such films, undergo parasitic surface 

nanostructurization, which determines their short-

wavelength applicability limit. Such structurization is 

caused by the initial cluster structure of a ChG film, 

which leads to spatial variations in its etching rate in a 

developer. Moreover, sufficiently high etching selectivi-

ty is observed in this process only in arsenic-based 

chalcogenide films, such as As-S, As-Se and As-S-Se.  

ChG films based on germanium (more environmentally 

acceptable compounds) are low-sensitive and deposition 

of an additional layer of silver is necessary for their use 

as a photoresist, that markedly complicates the techno-

logical process.   

In our previous investigations it was shown for the 

first time, that transient structure changes in ChG 

films (including annealed ones) accompanied by a 

change in the solubility of chalcogenide in selective 

etchants, and negative amine-based etchant dissolve 

illuminated areas of chalcogenide films, ie act as posi-

tive etchants [6, 7]. This new photostimulated effect 

allows to realize the photolithographic process on an-

nealed ChG layers (including Ge-based films) and de-

posited by non thermal methods by simultaneous expo-

sure and selective etching of such layers.  

In this work we report on the results of investiga-

tion of new photostimulated effect in amorphous chal-

cogenide films [6] and realization of interference im-

mersion photolithography on Ge-based chalcogenide 

layers by the simultaneous irradiation and selective 

etching of such layers.  

2. EXPERIMENT 
 

The samples were prepared by successive thermal 

evaporation in vacuum at a residual pressure of 2·10–3 

Pa, with a 6 nm thick (effective thickness) adhesive 

layer of Cr and ChG layers with thicknesses from 300 

nm to 600 nm, deposited onto substrates. Polished 

glass and silicon (orientation {111}) plates are used as 

substrates. The layer thickness was controlled during 

deposition with a KIT-1 quartz thickness meter and 

measured by MII-4 microinterferometer upon deposi-

tion. The deposited films were annealed for 0.5–2 h at 

temperatures ranging from Tg –5°C to Tg – 15°C, where 

Tg is the glass-transition temperature of a given chal-

cogenide. 

The etching rates of ChG films were studied using 

the quartz_oscillator method [8] in a quartz cuvette 

filled with a selective etchant [9] based on an amine 

solutions. The exposure of the samples during etching 

was performed in the integral light of a DRSh-250 mer-

cury lamp. Spectral emission lines of the same lamp 

were selected by filters for investigation of spectral 

dependencies of photoetching rate. Interference struc-

tures on the ChG films were recorded by their exposure 

to an interference pattern [4] formed by the light of a 

helium–cadmium laser (wavelength λ = 440 nm) using 

the holographic setup assembled by the wave-

amplitude division method. During exposure these 

samples were placed also into quartz cuvette filled with 

selective etching solutions (Fig. 1, a).  For decreasing of 

grating period a glass prism was used (Fig. 1, b). In 

this method of immersion interference lithography the 

prism was applied to a quartz cuvette using immersion 

liquid. This method allow to increase spatial frequency 

of grating in n time, where n - index of refraction of the 

prism. 
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Fig. 1 – The scheme of photoinduced etching for ChG film in 

interference pattern of coherent laser radiation (a) and the 

same with using of prism (b): 1 – quartz cuvette filled with 

selective etching solutions (2), 3 – substrate, 4 – adhesive 

layer of Cr, 5 – chalcogenide photoresist, 6 - immersion sub-

stance, 7 – prism. 
 

The profile shape of the obtained structures and 

surface roughness of ChG films were investigated with 

a Dimension 3000 Scanning Probe atomic force micro-

scope (AFM) (Digital Instruments Inc.).  

 

3. RESULTS AND DISCUSSION  
 

Figure 2 shows the kinetic curves d(t) for the etch-

ing of Ge25Se75 layers in a selective amine-based etch-

ant [9]. The initial thickness of these layers was d0 = 

300 nm (d is the layer thickness upon etching, and t is 

the etching duration): 1 – as-deposited unexposed lay-

er, 2 - annealed unexposed layer, 3 - as-deposited layer 

illuminated during etching by integral radiation of 

mercury lamp (250 Wt) with an energy density of inci-

dent radiation p = 8,8 mWt/sm2, 4 - annealed layer il-

luminated during etching by the same radiation. 

It can be seen in Fig. 2 that selected non-water 

etchant based on amine solution is characterized by 

good selectivity for the annealed Ge25Se75 layer (value 

of selectivity, that defined by the ratio of dissolution 

rate of exposed and unexposed layers reaches 20). But 

in contrast to traditional lithography on ChG photore-

sists which use thermally deposited (and non-annealed) 

ChG layers and where there is a negative selectivity 

(unexposed photoresist areas are dissolved faster, than 

exposed), in the photoetching case those layer dissolve 

faster, which are illuminated in the process of etching 

(curves 3 and 4, compared with curves 1 and 2). Disso-

lution rate increases with increasing radiation intensi-

ty non-linearly: sixfold increasing of p results in 3 

times reducing of the time of complete film dissolution. 

For germanium chalcogenides the photoetching effect 

shows up both on annealed and as-evaporated layers, 

but selectivity of etching is slightly high on the an-

nealed  layers.  

The spectral dependence of the photoinduced etch-

ing efficiency for ChG layers correlates well with  

the spectral dependence of the absorption index k near 

the absorption edge of these films [6,7].  

The results we obtained, enable the photoinduced etch-

ing of ChGs to be used in the formation of lithographic 

masks or profiled interference structures [6]. Photoli-

thography, based on this effect, has a number of ad-

vantages in comparison with conventional use of ChG 

films as a photoresist. It can be realized on annealed 

chalcogenide layers, which are characterized by lower 

defect concentration than thermally as-deposited films. 

As an example, figure 3 shows the results of the inves-

tigations of the substrate surface roughness and the 

As40S30Se30 film roughness before and after etching 

(and photoetching) in the selective etchant. The mean 

square roughness (rms) of the substrate and the films 

was determined from the results of AFM studies in an 

area of 100 μm2. Curve 1 shows the surface profile of 

the silicon substrate. Value of rms roughness of the 

substrate was 0.3 nm. After deposition of a thin adhe-

sive layer of chromium (effective thickness of about 6 

nm) and As40S30Se30 (thickness 360 nm) on silicon wa-

fer, the surface roughness of film compared to sub-

strate increased (curve 2), and rms roughness reached 

a value of 1.1 nm. This increase in roughness associat-

ed with the deposition of thin adhesive film, which has 

an island structure. 

 
 

Fig. 2 – Dissolution kinetics of Ge25Se75 layers in the amine-

based etchant: curve 1 – as-deposited unexposed layer, 2 - 

annealed and unexposed layer, 3 - as-deposited layer exposed 

during etching by integral radiation of mercury lamp (250 Wt) 

with an energy density of incident radiation p = 8,8 mWt/sm2, 

4 - annealed layer exposed during etching by the same lamp 
 

 
 

Fig. 3 – The surface profile of the samples: 1 - silicon sub-

strate, 2 -  As40S30Se30  film with Cr sublayer deposited on the 

substrate, 3 - as-deposited, exposed and etched As40S30Se30  

film, 4 - annealed As40S30Se30  film after the photoetching pro-

cess. 
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Curve 3 shows the profile surface of as-deposited 

As40S30Se30 film (initial thickness – 300 nm) exposed 

for 2 minutes by irradiation of mercury lamp, and 

then etched in the selective etchant for 3 minutes 

(film thickness is reduced by etching by about 30 nm). 

It is seen that the surface roughness of etched films is 

much higher than the original, with rms roughness 

reaches 3.7 nm. This is in agreement with the results 

of paper [5], where it was shown, that this roughness 

is caused by the initial cluster structure of a ChG 

film, which leads to spatial variations in its etching 

rate. 

Surface profile of annealed and photoetched for 2 

minutes the same As40S30Se30 film is shown by curve 4 

in Fig. 3. During the photoetching this film is illumi-

nated by integral radiation of mercury lamp having 

an energy density of incident radiation of 8,8 

mWt/sm2,  and the film thickness is reduced by half. 

The rms roughness of the annealed and photoetched 

film reaches 2.6 nm, i.e., surface roughness substan-

tially less than the as-evaporated film, and etched in 

the same selective etchant. This result is explained by 

the fact that the annealed ChG films are more uni-

form and characterized by lower defect concentration 

compared with thermally deposited and non-annealed 

layers. This makes it possible to obtain more higher-

quality lithographic masks or periodic relief-phase 

structures using photoetching effect.   

This effect has been used for the fabrication of dif-

fraction gratings on germanium ChG - more environ-

mentally acceptable compounds than traditionally used 

arsenic chalcogenides. 

Fig. 3 shows AFM - picture of the diffraction grat-

ing which was formed on the annealed Ge25Se75 film 

(the initial thickness of this layer was d0 = 200 nm) 

by photoetching method with using the same amine-

based etchant. The spatial frequency of grooves in the 

recorded grating is 1700 mm–1; the profile depth is 65 

nm. The shape of the groove profile of the grating is 

nearly sinusoidal. The recording time of the grating 

is 20 min, and its size is 30x30 mm at a laser power 

of 25 mW. During exposure to the absorbing radia-

tion of a helium–cadmium laser (wavelength λ = 440 

nm), the diffraction efficiency of the grating being 

formed was monitored in situ with the nonphotoac-

tive light of a helium–neon laser (λ = 632.8 nm). The 

increase of photoetching time (or power of laser) al-

lows to obtain gratings with higher relief depth liquid 

(Fig. 1). Fig. 4 shows AFM image of obtained diffrac-

tion grating formed on the Ge25Se75 film by this 

method of immersion interference lithography with 

photoinduced etching.  The spatial frequency of 

grooves in the recorded grating is 4330 mm–1; the 

profile depth is 25 nm. The shape of the groove pro-

file of the grating is nearly sinusoidal also. The re-

cording time (by helium–cadmium laser, λ = 440 nm) 

of the grating is 50 min, and its size, is 30x30 mm at 

a laser power of 25 mW. 
 

 
 

Fig. 4 – AFM image of a diffraction grating recorded in a 

Ge25Se75 layer by method of interference lithography with 

photoinduced etching and the profile of its grooves. 
 

For increasing the spatial frequency of the gratings 

we used a glass prism with n = 1.5, which was applied 

to a quartz cuvette using immersion  
 

 
 

Fig. 5 – AFM image of a diffraction grating recorded in an 

Ge25Se75 layer by method of immersion interference lithogra-

phy with photoinduced etching and  the profile of its grooves. 
 

 
 

Fig. 6 – AFM image of a 2-D diffraction structure recorded in 

an Ge25Se75 layer by method of interference lithography with 

photoinduced etching. 
 

This method also makes it possible to form on the 

surface of the photoresist complex two-dimensional 

relief-phase structure, or lithographic masks (Fig. 6) to 

profile surfaces of metals, semiconductors up to 

nanodimensions. 

 

4. CONCLUSIONS  
 

The simultaneous illumination and etching of as-

evaporated and annealed Ge-based ChG films results 
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in the photo-induced enhancement in the solubility of 

the chalcogenides in selective etchants. It was shown 

that negative-action etchants based on amines dissolve 

illuminated portions of a chalcogenide film, i.e., act as 

positive etchants 

The effect of photo-stimulated dissolution has been 

used for the fabrication of diffraction gratings on ger-

manium ChG films by interference immersion photoli-

thography. Relief parameters of the obtained struc-

tures are studied. The photoetching technique used to 

form interference periodic structures onto chalcogenide 

layers a simple, inexpensive, and adaptable to large-

scale manufacturing. 
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